
749 

Acta Cryst. (1995). D51, 749-759 

P h a s e  R e f i n e m e n t  and Extension by Means of N o n - c r y s t a l l o g r a p h i c  S y m m e t r y  Averaging 
using P a r a l l e l  C o m p u t e r s  

BY MARIUS A. CORNEA-HASEGAN,* ZHONGYUN ZHANG, ROBERT E. LYNCHS" AND DAN C. MARINESCU~ 

Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907, USA 

AND ANDREA HADHELD, JODI K. MUCKELBAUER, SANJEEV MUNSHI,§ LIANG TONG¶ AND MICHAEL G. ROSSMANN 

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA 

(Received 12 September 1994: accepted 27 January 1995) 

Abstract 
Electron-density averaging, fast Fourier synthesis and 
fast Fourier analysis programs have been adapted for 
parallel-computing systems. These have been linked 
to perform iterative phase improvement and extension 
utilizing non-crystallographic symmetry and solvent flat- 
tening. Various strategies for parallel algorithms have 
been tested on a variety of computers as a function of the 
number of computer nodes. Some experimental timing 
results are discussed. 

Introduction 
Advances in crystallographic techniques have often been 
correlated with advances in computational techniques. 
The last several years have seen major developments in 
parallel computing (Fox et al., 1987). Such computing 
requires calculations to be distributed over a set of 
processors (nodes) running simultaneously. Thus, the 
calculation time is reduced roughly in proportion to the 
number of available nodes. However, to achieve such 
optimal behavior, care must be taken that all nodes 
complete their tasks at more or less the same time and 
that their tasks are mostly independent of each other, 
as communication among nodes or with an external 
storage device is expensive in time. New algorithms are, 
therefore, often required to exploit the advantages of a 
parallel environment. 

Phase refinement and extension from low to high 
resolution in the determination of structures with non- 
crystallographic redundancy (Rossmann, 1990) is among 
the most computationally expensive tasks in crystal- 
lography. The essential components in this procedure 
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are electron-density averaging and Fourier summations. 
We have adapted, modified and rewritten programs to 
perform electron-density averaging, fast Fourier analy- 
sis, phase and amplitude combination, and fast Fourier 
synthesis using parallel computers (Fig. 1). By com- 
bining these parallel programs with a new language 
(Structural Biology Language, SBL), it is possible to 
run iterative cycles automatically in a variety of program 
combinations and sequences that can be tailored to each 
application. 

SBL is used to write scripts that can decide whether 
the next step should be another phase refinement iter- 
ation at the current resolution limit, whether a phase 
extension is warranted (and if so, by how much), whether 
an improved mask is to be calculated, or whether the 
non-crystallographic parameters are to be redetermined. 
In principle, it is now possible to provide a starting phase 
set at 20 A resolution, for example, and end up with a 
high-resolution electron-density map of a 10 7 Da virus 
one day later without any intervention. While in 1979 a 
single iteration in the structure determination of southern 
bean mosaic virus (Abad-Zapatero et al., 1980) required 
about 6 weeks of frustration, one iteration should now be 
possible in less than 1 h. Reductions in execution time 
permit consideration of more challenging problems and 
switch the emphasis away from the burdens of crystal- 
lographic techniques to the investigation of biology and 
biochemistry. 

Structure determination based on the presence of 
non-crystallographic symmetry has been reviewed fairly 
extensively (Rossmann, 1972, 1990; Lawrence, 1991; 
Jones, 1992). The concept is simple (Fig. 1): elec- 
tron density is improved by averaging among non- 
crystallographically related positions within the crys- 
tallographic asymmetric unit and by solvent flattening 
outside the molecular envelope where the local symme- 
try breaks down. The modified map is then inverted with 
a fast Fourier transformation (FFT) to give what should 
be an improved set of phases. The observed amplitudes 
can then be combined with these phases to compute 
a new electron-density map. Cycling can continue un- 
til there is no further improvement in the correlation 
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between observed and calculated structure amplitudes. 
Once convergence has been reached, phase extension 
can follow by a small step outwards in reciprocal space. 

Although early attempts at phase determination con- 
centrated on reciprocal-space techniques, greater suc- 
cess at phase improvement was subsequently found 
in real space. Phase extension (Unge et al., 1980), 
however, remained a hot topic of debate until 1984 when 
phases were extended from 4.0 to 3.5 A resolution in 
the structure determination of hemocyanin (Gaykema 
et al., 1984), which had sixfold non-crystallographic 
redundancy. In the structure determination of human 
rhinovirus 14 (Rossmann et al., 1985), which had 20-fold 
non-crystallographic redundancy, phases were extended 
all the way from 6.0 to 3.5/~ resolution for the first time. 
Since then the procedure has been used for extensions 
from lower than 20/~ to 3 A resolution or further in some 
structure determinations of spherical viruses. Thus, non- 
crystallographic symmetry, whether within one crystal 
form or between different forms, is a useful tool in the 
analyses of viruses, proteins and nucleic acids (Dodson, 
Gover & Wolf, 1992). The present parallel programs are 
applicable to any of these problems. 

Numerous real-space averaging programs have been 
described previously (Buehner, Ford, Moras, Olsen & 
Rossmann, 1974; Bricogne, 1976; Johnson, 1978; Smith, 
Fraser & Summers, 1983; Hogle, Chow & Filman, 1987; 
Jones, 1992). The electron-density averaging program 
(ENVELOPE) described by Rossmann et al. (Rossmann, 
McKenna, Tong, Xia, Dai, Wu, Choi & Lynch, 1992; 
Rossmann, McKenna, Tong, Xia, Dai, Wu, Choi, Mari- 
nescu & Lynch, 1992), was chosen for adaptation to 
parallel environments. The parallel fast Fourier program 
for analysis of an electron-density map (FFTINV) or 
synthesis of a map (FFTEXP and FFTSYNTH) were 
based on programs written by Ten Eyck (Ten Eyck, 
1973, 1977). The parallel program (RECIP) in which 
calculated phases are combined with suitably weighted 

observed amplitudes is based on a program written by 
Arnold (Arnold et al., 1987). 

Parallel computers and appropriate algorithms 

Parallel computers like the Thinking Machine CM5, the 
Intel Paragon and the Cray MPP are ideal for solving 
problems which require large amounts of computations 
and a substantial amount of memory. Such systems may 
consist of tens to thousands of nodes interconnected by a 
high-speed interconnection network. There are two main 
classes of parallel systems. In both classes, the memory 
is physically distributed among the nodes. In the first 
class, called distributed-memory multiprocessor systems, 
each node has direct access only to its local memory, as 
in the case of the CM5 or the Paragon. Each node is 
an independent computer (or possibly computers) which 
executes a program stored in its local memory and which 
has access to data in its local memory and to data on 
other nodes via a network. In the second class, called 
shared-memory multiprocessor systems, each node has 
direct access to the entire memory of all the nodes, as 
in the case of the Cray MPP. 

In a multicomputer, the network connecting both 
compute and input/output nodes has one of several 
topologies (Fig. 2), such as a two-dimensional mesh 
(like the Paragon), a three-dimensional torus (like the 
Cray MPP), a hypercube (like the iPSC/860), or a fat- 
tree (like the CMS). Each compute node consists of a 
high-performance microprocessor (Alpha for the Cray 
MPP, SPARC for CM5 and i860 for the Paragon), a 
local memory (16 to 128Mbyte at the present time), 
and coprocessors (e.g. a communication processor). Fu- 
ture generations of multicomputers may have several 
processors in each node. 

The parallel programs discussed in this paper all op- 
erate in the same-program multiple-data (SPMD) mode. 
The same code is loaded and executed by all nodes allo- 
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Fig. 1. A flowchart representing 
the iterative cycling procedure 
of molecular replacement real- 
space electron-density aver- 
aging. The boxed programs 
have been adapted for parallel 
environments. Two entry points 
are possible, one takes electron- 
density map for subsequent 
averaging, the other takes a set of 
structure factors for computation 
of a new map. 



M A R I U S  A. C O R N E A - H A S E G A N  et  al .  751 

cated to the user. Yet the actual  sequence  of  ins t ruct ions  
execu ted  by dif ferent  nodes  can be di f ferent  due to data 
dependenc i e s ,  and the ident i ty  of  the node.  

One  o f  the more  difficult  p rob lems  encoun te r ed  in 
wri t ing  a parallel  S P M D  m o d e  p rog ram is data part i t ion- 
ing, wh ich  affects the cho ice  of  a lgor i thm and eff ic iency 
of  the computa t ion .  In the case of  e lec t ron-dens i ty  aver-  
aging,  the th ree -d imens iona l  map,  wi th  n x  x n y  x n z  grid 
points ,  can be par t i t ioned into small  t h ree -d imens iona l  
vo lumes  ca l led  ' b r i cks ' .  These  bricks are brought  into 
the local  m e m o r y  of  a node  w h e n  needed .  Bricks  scat- 
tered th rough the ent i re  t h ree -d imens iona l  map  migh t  be 
present  in any node  m e m o r y  at a g iven  t ime (Fig. 3). In 
contras t  the th ree -d imens iona l  F F T ' s  require  planes,  or 
a co l lec t ion  of  planes of  data, ca l led  slabs (see Fig. 4). 

Ano the r  aspect  o f  a parallel  a lgor i thm is re la ted to 
load ba lancing .  The  amoun t  o f  work  a l located  to each 
node  should  be as even  as possible.  The  ef f ic iency of  
a paral lel  compu ta t i on  is r educed  by c o m m u n i c a t i o n  
a m o n g  nodes  and 'blocking '~ wh ich  occurs  w h e n  a node  
canno t  con t inue  its compu ta t i on  because  it is wai t ing  
for data  f rom another  node  or for the comple t i on  of  a 
requi red  ca lcu la t ion  in another  node.  

It is also necessa ry  to m a k e  the p rog ram efficient  

for us ing di f ferent  number s  of  nodes ,  d e p e n d i n g  on 
the size of  a p rob lem or avai labi l i ty  of  resources .  The  
scalabi l i ty  is the proper ty  of  an a lgor i thm and sys tem 
w h i c h  descr ibes  the degree  to wh ich  the execu t ion  t ime 

is r educed  in propor t ion  to the n u m b e r  of  avai lable  pro- 

cessors .  In the appl ica t ions  d i scussed  here,  consecu t ive  
p rog rams  requi red  for phase  re f inement  and ex tens ion  
need  dif ferent  number s  of  nodes  to run op t imal ly  for a 
p rob lem of  a g iven  size. A m o n g  all the p rog rams  needed  
for phase  re f inement  and extens ion ,  the E N V E L O P E  
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Fig. 3. Data partitioning for electron-density averaging. Given a three- 
dimensional map with nx × ny x nz grid intervals per unit cell edge, 
a three-dimensional volume called a 'brick' is defined which has 
bx x by × bz grid points. Several bricks are stored in each node. 

A 

? ? 
i I I 

. . . . . . . . . . . .  IM','lt. Oli:lCClilll:  II,'l',~,tl:~x (l~It.'~!l. fillip, tOlU~,, h~.;X'ru'tjlX', tic t - -  

Local . . \ rca N c l w . o r k  

I I i  T . .  

4 I) tl.,,pcr,.u!w 

Fig. 2. The parallel environment showing the architecture of a 
multi-computer with examples of a two-dimensional mesh and four- 
dimensional hypercube as networks. Each compute node consists of 
a processor, local memory, coprocessor, etc. Dedicated input/output 
nodes allow for data storage (on disks or tapes) and access to 
computer networks. 
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Fig. 4. Data partitioning for the FFTINV program. Each node is allocated 

an (x, z) slab of electron-density data on which the program performs 
two one-dimensional FFI"s transforming x to h, and z to l. A global 
exchange of data then takes place so that each node has a (y,l) slab. 
Then a final one-dimensional transformation changes y to k and the 
result is a set of calculated structure factors at points (h, k, l) in 
reciprocal space. The FFTSYNTH program works in the opposite 
order, starting with slabs in h and ending up with electron density 
at all x, y, z grid points. 
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Space  

P r o b l e m  g r o u p  
A 
Canine P4~212 
parvovirus 

B 
Nudaure l ia  P I 
w virus 

C 
Coxsackievirus P2~ 
B3 

Table 1. The three problems used to tune the ENVELOPE program 

No. o f  gr id  No.  o f  gr id  

No.  o f  poin ts  po in t s  

Cel l  Non-  in te rva ls  a long  wi th in  

d i m e n s i o n s  R e s o l u t i o n  Par t ic les  c rys t a l log raph ic  on cel l  A U *  e n v e l o p e  

(,~, ~) (,~,) pe r  A U *  r e d u n d a n c y  e d g e  e d g e s  per  A U *  
a = 254.5 
c = 795.0 3.0 I/2 30 260 x 260 x 800 131 x 131 x 401 3983888 

No.  o f  gr id  

po in t s  in 

so lven t  o r  

nuc l e i c  

ac id  per  

A U *  

2897673 

a = 413.6, ~ = 59.1 
b = 411).2, fi = 58.9 
c = 419.7, y = 64.0 

a = 574.6 
h = 302.1, fi = 107.7 

c =  521.6 

8.0 1 ~)  190 x 191)x It)() 191 x 191 x 191 5087462 

6.(I 2 120 308 x 150 x 264 309 x 76 x 265 3980614 

1771538 

2242646 

* A s y m m e t r i c  unit.  

program can use the largest number of nodes most 
effectively. 

Another potential difficulty is that when executing a 
sequence of parallel programs, it may be necessary to 
convert one data format to another. For example, the 
ENVELOPE program needs data in the brick format 
while the FFTINV program needs planes of data as input. 

Electron-density averaging 
For structures with large non-crystallographic redun- 
dancy, such as those discussed here, the averaging 
of electron density takes 75-90% of the time needed 
for one iteration of phase refinement or extension. 
A considerable effort was, therefore, devoted to the 
optimization of the ENVELOPE program (see Appendix) 
(Marinescu, Rice, Cornea-Hasegan, Lynch & Rossmann, 
1993; Cornea-Hasegan, Marinescu & Zhang, 1994). 
Three problems A, B and C, were used for our 
measurements (Table 1). 

Each grid point of the stored electron-density map 
is associated with an electron-density value and a mask 
number. The mask number identifies the molecule within 
the crystal to which the point belongs and thereby 
identifies which symmetry operators are required to map 
the point to all other non-crystallographic equivalent po- 
sitions. Special values of the mask number identify those 
grid points which are outside the molecular envelope in 
the solvent or in the nucleic acid regions (for a virus) 
where non-crystallographic symmetry breaks down. 

Each node is assigned a set of bricks to process and 
each brick is taken in turn as a 'master brick'. For 
each grid point within a master brick, 'slave bricks' 
are identified that contain the electron density at the 
non-crystallographically related positions. The density at 
a particular non-crystallographic position is calculated 
using an eight-point interpolation. This evaluation might 
require density in more than one slave brick. For mod- 
erately high resolution, most crystallographic equivalent 

points are likely to be in different slave bricks. If there 
is N-fold redundancy, then more than N slave bricks 
might have to be fetched to local memory from storage to 
calculate the average density at the first grid position of 
the given master brick. However, because the other grid 
points to be averaged are adjacent in the master brick, 
it is probable that they will also generate equivalent 
positions in the available slave bricks. 

The basic parallel algorithm for electron-density av- 
eraging is shown in the pseudo-code in Fig. 5. Initially, 
each node is allocated a subset of master bricks. Grid 
points located in the solvent or nucleic acid region 
require a negligible amount of computation, whereas 
those within the molecular envelope require electron- 
density averaging and need a significant amount of 
computation. The program, therefore, allocates master 
bricks to the nodes in such a way that the total number of 
grid points to be averaged is about equal for each node, 
consistent with the requirement of processing an integral 
number of bricks in each node. This insures roughly 
simultaneous completion of the calculations in all nodes. 
The bricks within a node are sequenced to minimize 
the need for fetching new slave bricks in passing from 
brick to brick. Every time access is required to a grid 
point which is not in a slave brick currently in the 
local memory, execution is interrupted to fetch that slave 
brick. This is called a 'brick fault'. A 'minimum fault 
path' is one which guarantees that as many as possible of 
the slave bricks used for one master brick will be needed 
for the next master brick processed by that node. Hence, 
the master bricks are strategically sequenced within a 
node, by making the least possible spatial alteration 
when going from master brick to master brick. 

Each node has a limited amount of local memory, not 
sufficient to hold all the bricks (Fig. 6). Three different 
data-management schemes have been developed for the 
ENVELOPE program to decide where to place the data: 
(a) data from the disk (DD), (b) data across nodes (DN) 
and (c) data servers (DS). In scheme (a) every time a 
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node needs a brick which is not available in its local 
memory the brick is fetched from the disk. In (b) the 
data are distributed among nodes at the beginning of the 
computation and each node has the information about 
where each brick is stored. In the case of a brick fault a 
special type of message is sent to the node where the data 
are located, the computation carried out by that node is 
interrupted and the brick is sent to the requesting node. 
In (c) a few nodes hold all the data, acting solely as data 
servers, and carry out no computation, while the other 
nodes request the data when needed. Table 2 presents a 
comparison of the three data-management schemes for 
problem C in Table 1, while Table 3 shows the ratio 
of the execution times with an increasing number of 
nodes for the three problems. The DN mode is clearly 
the best and scales well, because the execution time 
approximately halves when the number of  nodes doubles 
for both a hypercube and mesh architectures. The DS 
mode compares moderately well with the DN mode as 
the number of nodes increases, provided that the number 

of data-server nodes is kept small. The DD mode scales 
well on the hypercube for 16 and 64 nodes, and for 
the mesh between 64 to 128 nodes. However, scaling 
fails as the number of nodes increases further. This 
is because each node requests data from the disk via 
only a few input/output nodes. As the total number of 
nodes making such requests increases, bottlenecks occur 
at the input/output nodes. The Touchstone Delta at Cal 
Tech uses the same i860 processor as the Intel iPSC/860 
hypercube, but has faster communication and a different 
architecture, producing much smaller execution times 
(Table 2). 

The problems being compared in Table 3 all have 
very roughly the same number of grid points to be 
averaged per crystallographic asymmetric unit, but the 
non-crystallographic redundancy is doubled from A to B 
and again from B to C. This is reflected in the execution 
times. The greater the amount of computation, the greater 
are the savings on overheads. As the problem becomes 
larger the useful number of nodes also increases. A 

if (I am the coordinator node) then 
read control input file 
check consistency of  input 
count the number of grid points to be averaged in each brick 
send information to other nodes 

else 
receive information from the coordinator node 

endif 
open input and output data files 

load balancing procedure 
identify my_firs t_master_brick,  and my_last_master_brick 

process all master bricks allocated to me 
do brick = my_firs t_master_brick,  my_last_master_brick 

process all grid points in the current master brick 
do grid = 1, number_of_grid_points  in brick 

if (mask(gr id)  is solvent or acid) then 
flatten 

else 

in molecular envelope, average. 
determine all other grid points related to the current one by 
non-crystallographic symmetry and extract the electron density 

sum = () 
do nor = 1, non_crystal lographic_redundancy 

compute coordinates of point(grid, ncr) 
if (point(grid,nor) not in local memory) then 

identify slave brick ( s )  containing points required for interpolation 
fetch slave brick (s) 

endif 
interpolate electron_density for point (grid, ncr) 
sum = sum + electron_density 

enddo 
new_density = sum / non_crystal lographic_redundancy 
store new electron_density into new_master_brick 

endif 
enddo 
write new_mater...brick on the disk 

enddo 

if (I am not the_coordinator_node) then 
send to the_coordinator ..node averaging statistics 

else 
receive statistics 

endif 
close files and terminate computat ion 

Fig. 5. Pseudo code showing the parallel 
algorithm for electron-density averaging. 
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Table 2. Execution times of ENVELOPE program using the three basic data-management schemes 

Execution times (s) for problem C in Table i. 

System 
(network) 
Gamma ( hype rcube )  

Delta§ (mesh) 

DS+ + 
No. of data-server nodes 

No. of nodes DD* DN'I" 2 4 6 8 
16 370t) 3499 3929 4550 5441 - -  
32 2049 1782 1964) 21147 2182 - -  
64 1393 1034 11189 I 116 1123 - -  

8 x 8 = 64 973 877 - -  - -  - -  960 
8 x 16 = 128 575 460 - -  502 935 - -  
16 x 8 = 128 575 46(7 - -  499 - -  - -  
16 x 16 = 256 5(79 273 - -  3113 - -  - -  

16 x 32 = 512 666 . . . . .  

* DD = data from disk. 

i" DN = data across nodes. 
++ DS = data servers. 
§ n × n describes the aspect ratio of the mesh, altering the communica t ion  pattern between nodes. 

Three-Level Memory Hierarchy 

_ 16 Mbyte - hypercube / t n , . , ~  
- -  5 0  ns 

- -  5 ( I  Its 

- -  50  m s  

Fig. 6. The storage hierarchy. A data item can be stored either in the local 
main memory of a node, in the local main memory of another node, or 
on the shared disk. The data access time increases by approximately 
three orders of magnitude (from about 50 ns to at least 50 gs and 
then to about 50 ms). The typical amount of storage space available 
is about 32 Mbyte node -m, 2 Gbyte for a 64-node  system and 1 Tbyte 
disk space. 
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Fig. 7. ENVELOPE program execution times using the DN mode versus 
number  of nodes for a single processor computer (IBM RS 6000) and 

two parallel computers  (lntel iPSC/860 and Intel Paragon). Data were 
compiled from the projects listed in Table 4. The graph illustrates how 
execution time decreases with increasing number  of nodes. 

Table 3. The relative speedup in the DN mode of the 
ENVELOPE program for different size problems 

Type of 

system 
iPSC/860 
(hypercube) 

Touchstone 
Delta (mesh) 

Relative speedup* 

No. of nodes A B C 
8 1.00 1.017 1.00 

16 2 .19 1.94 1.95 
32 3.73 3.38 3.33 
64 5.38 5.46 5.75 

8 x 8 = 64 7.31 6.71 6.59 
16 x 4 = 64 7.96 6.75 6.57 
8 x 16 = 128 13.60 13.13 
16 x 8 = 128 13.67 13.46 13.43 
16 x 16 = 256 16.21 13.38 20.98 

* Relative speedup = (time on iPSC 860 8 nodes)/(actual time). 

sample of execution times for a variety of problems 
(Table 4) are given in Fig. 7. 

Fourier transformations 

After the average electron density has been determined in 
one crystallographic asymmetric unit, fast Fourier analy- 
sis (program FFTINV) is applied to it to calculate struc- 
ture factors, Fcalcexp(iO~calc). The calculated phases can 
then be combined with observed structure-factor ampli- 
tudes (program RECIP), and an FFT synthesis (program 
FFTSYNTH) can then compute a new electron-density 
map from the Fourier coefficients, Fobsexp(k~calc). These 
three computing steps take 10 to 25% of the total com- 
putation time per cycle of iteration of phase refinement 
and extension. 

The FFF kernels were originally written by Ten 
Eyck (Ten Eyck, 1973, 1977). These routines are for 
space group P1, thus permitting application to all space 
groups; the number of intervals along cell edges can be 
composite numbers with prime factors up to 19. 

The Fourier analysis of the electron density is com- 
puted by a sequence of one-dimensional FFT's. The 
values of the input electron density, p(x, y, z), are given 
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Table 4. Comple ted  and  current  projects  using the parallel  programs  

Project* C C M V  CVB3 HRV3 HRV 16 NOV NogV 
Space group P212121 P21 P21221 P22121 P21 P 1 
Cell dimensions 

a (,~) 381.3 574.6 4(X).8 362.6 562.1 413.6 
b (6) 381.3 302.1 344.2 347. I 354.1 41[).2 
c (A) 408.6 521.6 3(13.9 334.9 612.8 419.7 

(~) 90.0 90.0 90.0 90.0 90.0 59. I 
¢) (<) 90.0 107.7 90.0 90.0 I 10.9 58.9 
y (,) th).0 90.0 90.0 90.0 90.0 64.0 

Non-crystallographic 60 120 30 30 120 60 
redundancy 

Resolution extent of 3.2 3.0 2.8 2.8 3.3 2.7 
data (,~) 

Current extent of phase 3.2 3.5 4.0 3.5 4.2 4.5 
refinement 

No. of grid points in 12647635 26867217 5485401 10644480 16194821 21952000 
asymmetric unit 

No. of protein grid 8954977 19479677 4334789 5356345 I 1369066 12334766 
points averaged 

No. reflections in an 631455 1306112 283634 444091 955111 1086127 
asymmetric unit used 
to calculate map 

Protein mask Spherical Spherical Spherical Molecular Spherical Molecular 
Inner radius (/k) 80.0 75.0 70.0 85.0 80.0 90.0 
Outer radi us (/~) 146.0 162.0 165.0 165.0 175.0 220.0 

* C C M V ,  cowpea  chlorot ic  mott le  virus; CVB3,  coxsackievir t ts  B3; HRV3,  human rh inov ims  3; HRV 16, human rh inovims  16; NOV,  nodamura  

virus; NwV, Nudaurel ia  o9 virus. 

at grid points, 0 < x < n x -  1 ,0  < y <_ ny - 1 ,0  < z < n z -  1. 
Transforming first in the z direction, for each x and y, 
ny complex-valued coefficients Cl are obtained from, 

cl(x,  y, 1) = ~-~p(x, y, z)exp(27rilz). 

z 

Because p is real, cl(x,  y , - l )  is equal to the complex 
conjugate cl(x,  y, l). A second set of one-dimensional 
transformations produces, 

c 2 ( h ,  y, l) = Z C l ( X ,  y, l)exp(27rihx). 
X 

Finally, the structure factors are obtained in a third set 
of transformations, where, 

F(h, k, l) = L c 2 ( h ,  y, l)exp(27riky). 

Y 

These summations are over points in the unit cell (e.g. 
x = 0 . . . . .  nx - 1). But only those coefficients within 
the resolution limits R are saved, where, 

Ihl - hmax = a/R, [kl - kmax -- b/R, 0 < 1 _</max = c i R .  

Negative values of l are not needed, because p is real. 
The resulting (2hmax + 1)(2kmax + 1)(/max + 1) structure 
factors are reduced to those within a standard asymmetric 
unit of reciprocal space and the given resolution limits. 

In general, the number of electron-density values is 
so large that only a portion of the map can be stored 
in the local memory of most current computers (either 
sequential or parallel). Thus, only an '(x, z) slab' (Fig. 

4) of density p(x, y, z) with 0 < x _< nx - 1, 0 < z < 
nz - 1, and for as many values of y as possible can 
be stored in a node at one time. The slabs of density 
are generated from the stored density in one asymmetric 
unit with knowledge of the pertinent crystallographic 
symmetry. 

The size of a slab and the amount of memory available 
strongly influence the execution time. Let M denote the 
size of this storage. For P nodes, if M × P exceeds the 
volume V = nx × ny x nz, then all the data can be in node 
memory at one time. (At this time about 2 × 10 6 density 
values can be stored on each node of the Intel iPSC/860, 
or about 4 × 106 on the Intel Paragon.) In this case, the 
data are distributed evenly and slabs with V/P values are 
stored on each node, otherwise each node must transform 
several slabs. With a single call to the FFT kernels, the 
transformation with respect to z is accomplished for each 
of the z lines in the slab and another call transforms with 
respect to x. Each of the P nodes can simultaneously 
perform the transformations in z and x for the allocated 
slabs of electron density. The coefficients c2 must then 
be exchanged among nodes. This is necessary because 
no node has an entire set of values along any line in the 
y direction. Data are exchanged among nodes in order 
to construct (y, l) slabs for a range of h values (Fig. 
4). The execution time for F F T I N V  (and similarly for 
F F T S Y N T H )  depends crucially on how these exchanges 
are carried out. 

Two distinct mechanisms for this global transposition 
have been implemented: (a) the use of an intermediate 
disk file (scratch file mode) when M × P < V and (b) 
an internodal exchange (global exchange mode) when 
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Table 5. Analysis o f  execution times for  F F T S Y N T H  tested on HRV16 (see Table 4) at 3 ,~, resolution (all times are 
in s) 

'Start '  is the average time per node from start to when structure factors begin to be read. 'Read'  is the average time per node to read the structure 
factor from the disk. 'FFT'  is the average time per node to carry out all three (primary, secondary and tertiary) Fourier summations. 'Exchange'  is 
the average time per node to globally exchange the data among nodes. 'Write '  is the average time per node for writing the electron density onto the 
disk. "(Total)' is the average time per node for the execution of the program measuring from the start to the last node to finish. 

(a) Ratio (time for scratch exchanges)/(time for global exchange) 
Nodes NIH 128 Hypercube Cal Tech 512 Paragon 
8 58.573/5.064 -- 11.6 

16 24.873/3.357 -- 7.41 58.050/3.365 = 17.3 
32 44.174/2.407 = 18.35 103.692/3.716 = 27.9 
64 69.278/I.857 = 37.31 220.986/3.721 -- 59.4 

(b) Exchange time as a percent of total time 
NIH 128 Hypercube Cal Tech 512 Paragon 

Nodes Scratch Global Scratch Global 
8 63.5 13.2 

16 45.4 10.5 68.3 12.1 
32 69.6 11.2 76.7 12.0 
64 83. I 1(}.5 78.0 6.6 

(c) Breakdown of various components of the FFTSYNTH 
Nodes 16 32 
Start 1.855 2.990 
Read 2.939 1.783 
FFT 10.455 5.237 
Exchange 2.619 2.477 
Write 4.091 3.539 
(Total) 22.235 16.252 
Total 3(I.949 28.158 
% FFF 33.8 18.6 

inversion on the Purdue University 140-node Paragon 
48 64 96 128 

4.594 9.292 20.05(I 24.500 
2.693 1.803 1.791 1.507 
3.493 2.614 1.734 1.295 
2.440 2.639 3.083 4.699 
3.503 3.284 4.713 4.773 

! 6.924 19.776 31.489 36.9 ! 4 
20.050 30.100 51.046 64.551 
12.0 8.68 3.40 2.01 

M × P >  V. The first takes much more time than the 
second, not only because of the time necessary to transfer 
data between a node and a disk (Fig. 6), but also because 
of the bottleneck occurring when several nodes need 
access to the disk at the same time. The program uses 
(b) unless the data do not fit into the combined memory 
of all nodes allocated to the task. 

In the global exchange mode, the exchange of data 
takes place by a series of messages transmitted among 
the nodes. For example, assume there are only four 
nodes, 0, 1, 2 and 3, and suppose nx = ny = nz = 8. Node 0 
transforms a slab with two (x, z) planes, those with y = 0 
and 1. Then during the exchange, node 0 keeps the 'stick' 
of data with h = 0, 1; y = 0, 1; 1 = 0 . . . . .  7. Node 0 must 
receive the stick with h = 0 ,  1; y = 2 ,  3; l = 0  . . . . .  7 
from node 1 and, likewise, sticks with h = 0, 1 from the 
other nodes. At the end of the exchange, node 0 has the 
slab of c2(h, y, l) values with h = 0 ,  1; y = 0  . . . . .  7; 
1=0 . . . . .  7. Node 1 collects sticks with h =2  and 3 
from nodes 0, 2, 3, and similarly for the other nodes. 

This exchange is accomplished in the following three 
steps. 

(11 Nodes 0 and 
2 and 3 exchange 

(2) Nodes 0 and 
1 and 3 exchange 

(3) Nodes 0 and 
1 and 2 exchange 

1 exchange sticks; while also nodes 
sticks. 
2 exchange sticks; while also nodes 
sticks. 
3 exchange sticks; while also nodes 
sticks. 

Because of the architecture and the design of the com- 
munication system, each of these three steps takes the 
same amount of time. Similarly, when P nodes are used, 
all of the data is exchanged in P -  1 steps on a hypercube 
or P steps on a mesh. The Fourier synthesis is computed 
in an identical manner to the Fourier inversion, but in 
the opposite order. Table 5 lists times for these two 
exchange schemes for F F T S Y N T H  applied to the HRV 16 
problem (Table 4). The times show that the use of the 
global exchange method takes an order of magnitude less 
execution time than the scratch file method. In addition 
to the exchange time, there is 'overhead': time must be 
spent to load the program onto the nodes, time is required 
to read the input data and to write the output data, etc. 
The time actually devoted to the FFT transformation is 
rather small compared to these other times which are 
necessary to carry out the computation. 

Only the transformation time is scalable. The transfor- 
mation time (labeled 'FFT'  in Table 5) halves when the 
number of nodes doubles. But because of the 'overhead' 
times, the total execution time first decreases and then 
increases as the number of nodes increases. For the 
HRV 16 problem at 3/~ resolution, the minimum time to 
execute the complete F F T S Y N T H  program was 27 s with 
32 nodes of the 128-node hypercube and was 37 s with 
16 nodes of the 512-node Paragon. Results of timing 
experiments for the CVB3 problem (Table 4) are similar 
(Lynch & Zhang, 1994). 
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Structure-factor sorting 

Calculated phases, obtained from the FFTINV routine, 
are combined with the original observed amplitudes 
and used in the calculation of statistics useful in the 
assessment of convergence in phase refinement (e.g. 
correlation coefficients and R factors). The RECIP pro- 
gram sorts the output from the FFTINV program into 
the same sequence as used for listing the observed am- 
plitudes of one reciprocal-space asymmetric unit. First, 
the reflections are distributed evenly to P nodes. Then 
each node sorts its allocated set of structure factors in 
ascending order according to the values of the reflection 
identifier h x 22o + k x 2~°+ I. Next, information about 
the distribution of the sorted reflections is sent by 
each node to node 0. Node 0 uses this information to 
determine the range of reflections for each node, so that 
each node will merge approximately the same number of 
reflections. These limits are sent to the nodes and then 
an exchange of reflections is carried out similar to the 
exchange used by FFTINV and by FFTSYNTH. Each 
node then merges the reflections it has received from 
the other nodes into a fully ordered set (see Table 6 for 
execution times). 

One of the options of the RECIP program is that each 
calculated structure-factor amplitude which corresponds 
to an observed amplitude is replaced to obtain the 
Fourier coefficients, WFob,~exp(i~c), where w is the 
weight or figure of merit determined from Fob,~ and 
Fcalc. These reflections are passed to program FFTEXP, 
which uses knowledge of the crystallographic symmetry 
to expand the reflection data from an asymmetric unit to 
a hemisphere of reciprocal space. This is necessary as 
the FFT synthesis program is for space group P1. The 
coefficients are then sorted using the same algorithm as 
before for presentation to the FFTSYNTH program (see 
Table 6 for execution times). 

The Structural Biology Language 

A desirable computing environment for solving com- 
plex problems on parallel machines would be a high- 
performance front-end graphics workstation to provide 
windows and display capability, connected to a variety 
of remote parallel computers. Parallel machines are 
inherently more complex and less user friendly than 
sequential computers. Access to parallel machines is 
rather restricted, as they are expensive shared resources. 
To allow a user to focus on the application without 
being distracted by the problems of different systems, an 
environment has been created to hide as much as possible 
of the complexities. It also includes graphical output for 
the inspection of diffraction patterns, electron-density 
maps and mask allocation. Part of this environment is 
a special 'Structural Biology Language' (SBL) (Cornea- 
Hasegan & Marinescu, 1994). 

Table 6. Execution times (s)for  RECIP and FFTEXP 

The table refers to the H R V I 6  project  at 3.5 ,~ resolut ion (Table 4). All  
t imes are affected to some extent  by concurrent ly  running programs in 
other parl i t ions of  the systems.  

Inlel 
iPSC/860 at NIH lntel Delta lntel Paragon 

Nodes  RECIP FFTEXP RECIP FFTEXP RECIP FFTEXP 
2 135 95 
4 352 151 129 (,~1 75 47 
8 313 1 IX) 83 36 54 36 

16 2611 84 51) 22 56 27 
32 287 76 38 16 58 22 
64 37 13 

128 61 14 

The programs currently available in this environment 
relate to phase refinement and phase extension in the 
presence of non-crystallographic symmetry, including 
the special case of merely solvent flattening when the 
non-crystallographic redundancy is one. It is intended 
to be augmented to support other types of programs 
to cover many aspects of structural biology and macro- 
molecular crystallography. For instance, a start has been 
made to develop parallel algorithms for diffraction data 
processing (Rossmann, 1979; Rossmann, Leslie, Abdel- 
Meguid & Tsukihara, 1979). 

Two types of programs can be invoked by SBL. 
(a) Primary programs like ENVELOPE, FFTINV, RE- 

CIP, FFTEXP and FFTSYNTH, rotation-function cal- 
culations, rigid-body refinements and structure-factor 
calculations. 

(b) Auxiliary programs designed to support the appro- 
priate sequencing of the programs in the first category, 
to test some of their output, and to transform part of the 
control input data for these programs. 

Currently these programs are available on: (a) 
iPSC/860 systems, at Purdue University and at NIH; (b) 
the Paragon systems at Purdue University and California 
Institute of Technology and Intel Super Computer 
System Division. Source code can be obtained from 
the authors. 

SBL permits multiple nested iterations, and two dif- 
ferent levels of phase extension. SBL also allows the 
computation to be restarted after being stopped by the 
user, by a hardware failure or exhaustion of the allocated 
time. The computation can be resumed from the end of 
the last completely executed program in the series of pro- 
grams requested. Every SBL program is compiled into a 
UNIX shell script (UNIX command list), which controls 
the execution of the entire sequence of programs. 

Testing for convergence 

The major criterion used in tests of convergence during 
phase refinements is the correlation between Fobs and 
Fcaj~. The F~alc values are obtained by back Fourier 
transformation of the modified electron-density map. The 
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correlation coefficient, C, is defined as, 

C = [~-~((Fobs) - Fobs)((Fcalc) - Fcalc) ] 

- {[~--]((Fobs) - Fobs)2~-]((Fca.c) - Fca.c)2]'/2}, 

where (Fobs) and (F~alc) are mean values and the sums 
are over all observed reflections in specified resolution 
shells. Convergence tests are based on the improvement, 
A, of the overall C in successive iterations, i, where 
A = Ci - Ci_ ~. The first and most important test is that 
if the overall C improves. However, additional tests can 
also be made to ensure the following. 

(1) That the refinement is uniform over the complete 
resolution range. If the C's in some resolution shells are 
substantially poorer than in neighboring shells, then this 
might imply conflicts between differing phase solutions 
(Arnold et al., 1987). 

(2) That there is no further change in C in all 
resolution shells. 

(3) That the C's have essentially converged for all 
sizes of F. The larger F's,  although fewer in number, 
have a greater influence on the electron density and will, 
therefore, converge faster. 

Although faster workstations with larger internal 
memory are emerging every year, so are larger 
crystalline biological complexes, as are progressively 
more computer intensive techniques for the solutions of 
difficult crystallographic problems. Parallel computers 
can substantially reduce computing time and permit the 
study of problems with very large memory requirements. 
With the ability to collect diffraction data of complex 
biological crystallized samples at ever increasing rates, 
it is anticipated that expansion of the use of parallel 
computers will accompany the exploration of new 
biological frontiers. 
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Concluding remarks 

The parallel algorithms used in the programs described 
here are designed for distributed and shared-memory 
MIMD (multiple instruction multiple data) architectures. 
There are several types of MIMD systems: (a) mas- 
sively parallel processing systems (MPP's), such as 
discussed in this paper, (b) clusters of workstations 
and (c) multiprocessor workstations. The programs for 
workstation clusters (available by mid-1995 from the 
authors) use the same algorithms as those described 
here, but communicate using libraries like MPI (message 
passing interface) and PVM (parallel virtual machine). 

A small problem could be solved using one or a 
few workstations, while a large problem may require 
tens or possibly hundreds of workstations or an MPP 
with tens or hundreds of compute nodes. In contrast, 
a sequential program can only run on one single pro- 
cessor workstation regardless of the problem size. By 
harnessing them together or by using many compute 
nodes in an MPP, the computation will be carried out 
faster in proportion to the number of computers running 
parallel. Some of the largest problems we describe 
here are still outside the usual memory capacity of 
the largest workstations currently available. Considering 
the crystallographic difficulties, the coxsackievirus B3 
virus structure (Muckelbauer et al., 1995) would have 
been difficult to solve without the help of a parallel- 
processing system. Parallel computers permitted testing 
of a much larger number of procedures (Muckelbauer et 
al., 1995) in a reasonable time frame eventually leading 
to a successful solution. 

APPENDIX 

The  E N V E L O P E  program provides several functions 
(Rossmann, McKenna, Tong, Xia, Dai, Wu, Choi, Mari- 
nescu & Lynch, 1992). 

1. Mask  generation 

(a) Generates masks based upon intersecting spheres. 
This is the simplest way of determining a mask, useful 
in the initial stages of a structure determination. 

(b) Generates masks based on the current averaged 
electron density placed into a standard orientation. By 
first averaging the density into a standard orientation, 
the surrounding molecules average out, because the local 
symmetry breaks down outside the molecular envelope. 
Hence, this new map can be used to determine the limits 
of the molecular envelope. 

(c) Generates masks based on atomic positions of 
a homologous molecule. If a reasonable structure is 
already available, it might be the best guide for deter- 
mining an envelope. 

(d) Modifies a mask (enlarges, shrinks, fills holes). 
These operations ensure that the mask has the correct 
non-crystallographic symmetry and touch up other prop- 
erties. 

2. Averaging operations 

(a) Modifies electron density by averaging, solvent 
flattening, etc. This is the central averaging procedure 
for phase improvement and averaging. 
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(b) P l aces  the a v e r a g e d  e l e c t r o n  d e n s i t y  into a s tan-  

da rd  o r i en ta t ion .  Th i s  o p e r a t i o n  is r e f e r r e d  to in l (b )  
above .  In e s s e n c e  the  c a l c u l a t i o n s  are  s imi l a r  to t hose  

in 2(a) .  

3. Other  fac i l i t i es  

(a)  Takes  e l e c t r o n  d e n s i t y  f r o m  a s t a n d a r d  o r i e n t a t i o n  

and  p l aces  it into the  c rys t a l  cel l  t ak ing  into  a c c o u n t  

the  v a r i o u s  m o l e c u l a r  e n v e l o p e s .  I f  a s t ruc tu re  was  

p r e v i o u s l y  d e f i n e d  in a s t a n d a r d  o r i en t a t i on ,  t hen  this  

p r o c e d u r e  is u se fu l  in g e n e r a t i n g  a s ta r t ing  d e n s i t y  w i th in  

the  c rys t a l  o f  in teres t .  

(b) D e t e r m i n e s  o p t i m a l  o r i e n t a t i o n  and  pos i t ion  o f  

a pa r t i c l e  by  s e a r c h i n g  for  m i n i m u m  e l e c t r o n - d e n s i t y  

sca t t e r  or  m a x i m u m  h e i g h t  o f  a g i v e n  e l e c t r o n - d e n s i t y  

f e a t u r e  such  as a h e a v y  a tom.  

(c)  O t h e r  f u n c t i o n s  r e l a t ed  to da ta  c o n v e r s i o n ,  e.g. 

m e r g i n g  m a s k  and  e l e c t r o n - d e n s i t y  data ,  c o n v e r t i n g  da t a  

f r o m  b r i ck  to p l ane  f o r m a t  and  back ,  etc. 
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