
749

Acta Cryst. (1995). D51, 749-759

P h a s e R e f i n e m e n t and Extension by Means of N o n - c r y s t a l l o g r a p h i c S y m m e t r y Averaging
using P a r a l l e l C o m p u t e r s

BY MARIUS A. CORNEA-HASEGAN,* ZHONGYUN ZHANG, ROBERT E. LYNCHS" AND DAN C. MARINESCU~

Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907, USA

AND ANDREA HADHELD, JODI K. MUCKELBAUER, SANJEEV MUNSHI,§ LIANG TONG¶ AND MICHAEL G. ROSSMANN

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA

(Received 12 September 1994: accepted 27 January 1995)

Abstract
Electron-density averaging, fast Fourier synthesis and
fast Fourier analysis programs have been adapted for
parallel-computing systems. These have been linked
to perform iterative phase improvement and extension
utilizing non-crystallographic symmetry and solvent flat-
tening. Various strategies for parallel algorithms have
been tested on a variety of computers as a function of the
number of computer nodes. Some experimental timing
results are discussed.

Introduction
Advances in crystallographic techniques have often been
correlated with advances in computational techniques.
The last several years have seen major developments in
parallel computing (Fox et al., 1987). Such computing
requires calculations to be distributed over a set of
processors (nodes) running simultaneously. Thus, the
calculation time is reduced roughly in proportion to the
number of available nodes. However, to achieve such
optimal behavior, care must be taken that all nodes
complete their tasks at more or less the same time and
that their tasks are mostly independent of each other,
as communication among nodes or with an external
storage device is expensive in time. New algorithms are,
therefore, often required to exploit the advantages of a
parallel environment.

Phase refinement and extension from low to high
resolution in the determination of structures with non-
crystallographic redundancy (Rossmann, 1990) is among
the most computationally expensive tasks in crystal-
lography. The essential components in this procedure

* Present address: Supercomputer Systems Division, lntel Corporation,
14924 NW Greenbrier Parkway, CO6-04, Beaverton, OR 97006, USA.

f Also in Department of Mathematics, Purdue University, West
Lafayette, Indiana 47907, USA.

~+ Author for correspondence.
§ Present address: NC1-Frederick R & D Center, PO Box B, Frederick,

MD 21702-1201, USA.
¶ Present address: Department of Medicinal Chemistry, Boehringer

lngelheim Pharmaceuticals, Inc., 9(F0 Ridgebury Road, Ridgefield, CT
06877, USA.

© 1995 International Union of Crystallography
Printed in Great Britain - all rights reserved

are electron-density averaging and Fourier summations.
We have adapted, modified and rewritten programs to
perform electron-density averaging, fast Fourier analy-
sis, phase and amplitude combination, and fast Fourier
synthesis using parallel computers (Fig. 1). By com-
bining these parallel programs with a new language
(Structural Biology Language, SBL), it is possible to
run iterative cycles automatically in a variety of program
combinations and sequences that can be tailored to each
application.

SBL is used to write scripts that can decide whether
the next step should be another phase refinement iter-
ation at the current resolution limit, whether a phase
extension is warranted (and if so, by how much), whether
an improved mask is to be calculated, or whether the
non-crystallographic parameters are to be redetermined.
In principle, it is now possible to provide a starting phase
set at 20 A resolution, for example, and end up with a
high-resolution electron-density map of a 10 7 Da virus
one day later without any intervention. While in 1979 a
single iteration in the structure determination of southern
bean mosaic virus (Abad-Zapatero et al., 1980) required
about 6 weeks of frustration, one iteration should now be
possible in less than 1 h. Reductions in execution time
permit consideration of more challenging problems and
switch the emphasis away from the burdens of crystal-
lographic techniques to the investigation of biology and
biochemistry.

Structure determination based on the presence of
non-crystallographic symmetry has been reviewed fairly
extensively (Rossmann, 1972, 1990; Lawrence, 1991;
Jones, 1992). The concept is simple (Fig. 1): elec-
tron density is improved by averaging among non-
crystallographically related positions within the crys-
tallographic asymmetric unit and by solvent flattening
outside the molecular envelope where the local symme-
try breaks down. The modified map is then inverted with
a fast Fourier transformation (FFT) to give what should
be an improved set of phases. The observed amplitudes
can then be combined with these phases to compute
a new electron-density map. Cycling can continue un-
til there is no further improvement in the correlation

Acta Crystallographica Section D
ISSN 0907-4449 © 1995

750 NON-CRYSTALLOGRAPHIC SYMMETRY AVERAGING USING PARALLEL COMPUTERS

between observed and calculated structure amplitudes.
Once convergence has been reached, phase extension
can follow by a small step outwards in reciprocal space.

Although early attempts at phase determination con-
centrated on reciprocal-space techniques, greater suc-
cess at phase improvement was subsequently found
in real space. Phase extension (Unge et al., 1980),
however, remained a hot topic of debate until 1984 when
phases were extended from 4.0 to 3.5 A resolution in
the structure determination of hemocyanin (Gaykema
et al., 1984), which had sixfold non-crystallographic
redundancy. In the structure determination of human
rhinovirus 14 (Rossmann et al., 1985), which had 20-fold
non-crystallographic redundancy, phases were extended
all the way from 6.0 to 3.5/~ resolution for the first time.
Since then the procedure has been used for extensions
from lower than 20/~ to 3 A resolution or further in some
structure determinations of spherical viruses. Thus, non-
crystallographic symmetry, whether within one crystal
form or between different forms, is a useful tool in the
analyses of viruses, proteins and nucleic acids (Dodson,
Gover & Wolf, 1992). The present parallel programs are
applicable to any of these problems.

Numerous real-space averaging programs have been
described previously (Buehner, Ford, Moras, Olsen &
Rossmann, 1974; Bricogne, 1976; Johnson, 1978; Smith,
Fraser & Summers, 1983; Hogle, Chow & Filman, 1987;
Jones, 1992). The electron-density averaging program
(ENVELOPE) described by Rossmann et al. (Rossmann,
McKenna, Tong, Xia, Dai, Wu, Choi & Lynch, 1992;
Rossmann, McKenna, Tong, Xia, Dai, Wu, Choi, Mari-
nescu & Lynch, 1992), was chosen for adaptation to
parallel environments. The parallel fast Fourier program
for analysis of an electron-density map (FFTINV) or
synthesis of a map (FFTEXP and FFTSYNTH) were
based on programs written by Ten Eyck (Ten Eyck,
1973, 1977). The parallel program (RECIP) in which
calculated phases are combined with suitably weighted

observed amplitudes is based on a program written by
Arnold (Arnold et al., 1987).

Parallel computers and appropriate algorithms

Parallel computers like the Thinking Machine CM5, the
Intel Paragon and the Cray MPP are ideal for solving
problems which require large amounts of computations
and a substantial amount of memory. Such systems may
consist of tens to thousands of nodes interconnected by a
high-speed interconnection network. There are two main
classes of parallel systems. In both classes, the memory
is physically distributed among the nodes. In the first
class, called distributed-memory multiprocessor systems,
each node has direct access only to its local memory, as
in the case of the CM5 or the Paragon. Each node is
an independent computer (or possibly computers) which
executes a program stored in its local memory and which
has access to data in its local memory and to data on
other nodes via a network. In the second class, called
shared-memory multiprocessor systems, each node has
direct access to the entire memory of all the nodes, as
in the case of the Cray MPP.

In a multicomputer, the network connecting both
compute and input/output nodes has one of several
topologies (Fig. 2), such as a two-dimensional mesh
(like the Paragon), a three-dimensional torus (like the
Cray MPP), a hypercube (like the iPSC/860), or a fat-
tree (like the CMS). Each compute node consists of a
high-performance microprocessor (Alpha for the Cray
MPP, SPARC for CM5 and i860 for the Paragon), a
local memory (16 to 128Mbyte at the present time),
and coprocessors (e.g. a communication processor). Fu-
ture generations of multicomputers may have several
processors in each node.

The parallel programs discussed in this paper all op-
erate in the same-program multiple-data (SPMD) mode.
The same code is loaded and executed by all nodes allo-

i External
Electron

Density Map
i
i

i

Averages electron density
Creates masks

Spherical
Molecular
Alomic

Refines non-cry ,,I allographtc
parameters

t!
xternal reflection file
ontaining Fob s and/or Fca I
nd Ctcalc

i
i
i

V

i!{F F~re× pandi~]
IFF"rsvnt h e s i s H

Calculalcs Fcalc and Otcalc Combines Fob s with acalc Calculates clcclron density
l rorll cleclron density Calculales rclmerncr'fl slallSliCs: n'Jap Iroln Fobsexp(tctcalc)
Exlcnd~ the resolulion R-Factor

CorrclalJon coc[lictet}l

Fig. 1. A flowchart representing
the iterative cycling procedure
of molecular replacement real-
space electron-density aver-
aging. The boxed programs
have been adapted for parallel
environments. Two entry points
are possible, one takes electron-
density map for subsequent
averaging, the other takes a set of
structure factors for computation
of a new map.

M A R I U S A. C O R N E A - H A S E G A N et al . 751

cated to the user. Yet the actual sequence of ins t ruct ions
execu ted by dif ferent nodes can be di f ferent due to data
dependenc i e s , and the ident i ty of the node.

One o f the more difficult p rob lems encoun te r ed in
wri t ing a parallel S P M D m o d e p rog ram is data part i t ion-
ing, wh ich affects the cho ice of a lgor i thm and eff ic iency
of the computa t ion . In the case of e lec t ron-dens i ty aver-
aging, the th ree -d imens iona l map, wi th n x x n y x n z grid
points , can be par t i t ioned into small t h ree -d imens iona l
vo lumes ca l led ' b r i cks ' . These bricks are brought into
the local m e m o r y of a node w h e n needed . Bricks scat-
tered th rough the ent i re t h ree -d imens iona l map migh t be
present in any node m e m o r y at a g iven t ime (Fig. 3). In
contras t the th ree -d imens iona l F F T ' s require planes, or
a co l lec t ion of planes of data, ca l led slabs (see Fig. 4).

Ano the r aspect o f a parallel a lgor i thm is re la ted to
load ba lancing . The amoun t o f work a l located to each
node should be as even as possible. The ef f ic iency of
a paral lel compu ta t i on is r educed by c o m m u n i c a t i o n
a m o n g nodes and 'blocking '~ wh ich occurs w h e n a node
canno t con t inue its compu ta t i on because it is wai t ing
for data f rom another node or for the comple t i on of a
requi red ca lcu la t ion in another node.

It is also necessa ry to m a k e the p rog ram efficient

for us ing di f ferent number s of nodes , d e p e n d i n g on
the size of a p rob lem or avai labi l i ty of resources . The
scalabi l i ty is the proper ty of an a lgor i thm and sys tem
w h i c h descr ibes the degree to wh ich the execu t ion t ime

is r educed in propor t ion to the n u m b e r of avai lable pro-

cessors . In the appl ica t ions d i scussed here, consecu t ive
p rog rams requi red for phase re f inement and ex tens ion
need dif ferent number s of nodes to run op t imal ly for a
p rob lem of a g iven size. A m o n g all the p rog rams needed
for phase re f inement and extens ion , the E N V E L O P E

I I X

/
X

ny

Fig. 3. Data partitioning for electron-density averaging. Given a three-
dimensional map with nx × ny x nz grid intervals per unit cell edge,
a three-dimensional volume called a 'brick' is defined which has
bx x by × bz grid points. Several bricks are stored in each node.

A

? ?
i I I

. IM','lt. Oli:lCClilll: II,'l',~,tl:~x (l~It.'~!l. fillip, tOlU~,, h~.;X'ru'tjlX', tic t - -

Local . . \ rca N c l w . o r k

I I i T . .

4 I) tl.,,pcr,.u!w

Fig. 2. The parallel environment showing the architecture of a
multi-computer with examples of a two-dimensional mesh and four-
dimensional hypercube as networks. Each compute node consists of
a processor, local memory, coprocessor, etc. Dedicated input/output
nodes allow for data storage (on disks or tapes) and access to
computer networks.

z or I

/

/
V () r

(y.I) shtb

i /
x or h

(x,z) slab
Fig. 4. Data partitioning for the FFTINV program. Each node is allocated

an (x, z) slab of electron-density data on which the program performs
two one-dimensional FFI"s transforming x to h, and z to l. A global
exchange of data then takes place so that each node has a (y,l) slab.
Then a final one-dimensional transformation changes y to k and the
result is a set of calculated structure factors at points (h, k, l) in
reciprocal space. The FFTSYNTH program works in the opposite
order, starting with slabs in h and ending up with electron density
at all x, y, z grid points.

752 NON-CRYSTALLOGRAPHIC SYMMETRY AVERAGING USING PARALLEL COMPUTERS

Space

P r o b l e m g r o u p
A
Canine P4~212
parvovirus

B
Nudaure l ia P I
w virus

C
Coxsackievirus P2~
B3

Table 1. The three problems used to tune the ENVELOPE program

No. o f gr id No. o f gr id

No. o f poin ts po in t s

Cel l Non- in te rva ls a long wi th in

d i m e n s i o n s R e s o l u t i o n Par t ic les c rys t a l log raph ic on cel l A U * e n v e l o p e

(,~, ~) (,~,) pe r A U * r e d u n d a n c y e d g e e d g e s per A U *
a = 254.5
c = 795.0 3.0 I/2 30 260 x 260 x 800 131 x 131 x 401 3983888

No. o f gr id

po in t s in

so lven t o r

nuc l e i c

ac id per

A U *

2897673

a = 413.6, ~ = 59.1
b = 411).2, fi = 58.9
c = 419.7, y = 64.0

a = 574.6
h = 302.1, fi = 107.7

c = 521.6

8.0 1 ~) 190 x 191)x It)() 191 x 191 x 191 5087462

6.(I 2 120 308 x 150 x 264 309 x 76 x 265 3980614

1771538

2242646

* A s y m m e t r i c unit.

program can use the largest number of nodes most
effectively.

Another potential difficulty is that when executing a
sequence of parallel programs, it may be necessary to
convert one data format to another. For example, the
ENVELOPE program needs data in the brick format
while the FFTINV program needs planes of data as input.

Electron-density averaging
For structures with large non-crystallographic redun-
dancy, such as those discussed here, the averaging
of electron density takes 75-90% of the time needed
for one iteration of phase refinement or extension.
A considerable effort was, therefore, devoted to the
optimization of the ENVELOPE program (see Appendix)
(Marinescu, Rice, Cornea-Hasegan, Lynch & Rossmann,
1993; Cornea-Hasegan, Marinescu & Zhang, 1994).
Three problems A, B and C, were used for our
measurements (Table 1).

Each grid point of the stored electron-density map
is associated with an electron-density value and a mask
number. The mask number identifies the molecule within
the crystal to which the point belongs and thereby
identifies which symmetry operators are required to map
the point to all other non-crystallographic equivalent po-
sitions. Special values of the mask number identify those
grid points which are outside the molecular envelope in
the solvent or in the nucleic acid regions (for a virus)
where non-crystallographic symmetry breaks down.

Each node is assigned a set of bricks to process and
each brick is taken in turn as a 'master brick'. For
each grid point within a master brick, 'slave bricks'
are identified that contain the electron density at the
non-crystallographically related positions. The density at
a particular non-crystallographic position is calculated
using an eight-point interpolation. This evaluation might
require density in more than one slave brick. For mod-
erately high resolution, most crystallographic equivalent

points are likely to be in different slave bricks. If there
is N-fold redundancy, then more than N slave bricks
might have to be fetched to local memory from storage to
calculate the average density at the first grid position of
the given master brick. However, because the other grid
points to be averaged are adjacent in the master brick,
it is probable that they will also generate equivalent
positions in the available slave bricks.

The basic parallel algorithm for electron-density av-
eraging is shown in the pseudo-code in Fig. 5. Initially,
each node is allocated a subset of master bricks. Grid
points located in the solvent or nucleic acid region
require a negligible amount of computation, whereas
those within the molecular envelope require electron-
density averaging and need a significant amount of
computation. The program, therefore, allocates master
bricks to the nodes in such a way that the total number of
grid points to be averaged is about equal for each node,
consistent with the requirement of processing an integral
number of bricks in each node. This insures roughly
simultaneous completion of the calculations in all nodes.
The bricks within a node are sequenced to minimize
the need for fetching new slave bricks in passing from
brick to brick. Every time access is required to a grid
point which is not in a slave brick currently in the
local memory, execution is interrupted to fetch that slave
brick. This is called a 'brick fault'. A 'minimum fault
path' is one which guarantees that as many as possible of
the slave bricks used for one master brick will be needed
for the next master brick processed by that node. Hence,
the master bricks are strategically sequenced within a
node, by making the least possible spatial alteration
when going from master brick to master brick.

Each node has a limited amount of local memory, not
sufficient to hold all the bricks (Fig. 6). Three different
data-management schemes have been developed for the
ENVELOPE program to decide where to place the data:
(a) data from the disk (DD), (b) data across nodes (DN)
and (c) data servers (DS). In scheme (a) every time a

MARIUS A. CORNEA-HASEGAN et al. 753

node needs a brick which is not available in its local
memory the brick is fetched from the disk. In (b) the
data are distributed among nodes at the beginning of the
computation and each node has the information about
where each brick is stored. In the case of a brick fault a
special type of message is sent to the node where the data
are located, the computation carried out by that node is
interrupted and the brick is sent to the requesting node.
In (c) a few nodes hold all the data, acting solely as data
servers, and carry out no computation, while the other
nodes request the data when needed. Table 2 presents a
comparison of the three data-management schemes for
problem C in Table 1, while Table 3 shows the ratio
of the execution times with an increasing number of
nodes for the three problems. The DN mode is clearly
the best and scales well, because the execution time
approximately halves when the number of nodes doubles
for both a hypercube and mesh architectures. The DS
mode compares moderately well with the DN mode as
the number of nodes increases, provided that the number

of data-server nodes is kept small. The DD mode scales
well on the hypercube for 16 and 64 nodes, and for
the mesh between 64 to 128 nodes. However, scaling
fails as the number of nodes increases further. This
is because each node requests data from the disk via
only a few input/output nodes. As the total number of
nodes making such requests increases, bottlenecks occur
at the input/output nodes. The Touchstone Delta at Cal
Tech uses the same i860 processor as the Intel iPSC/860
hypercube, but has faster communication and a different
architecture, producing much smaller execution times
(Table 2).

The problems being compared in Table 3 all have
very roughly the same number of grid points to be
averaged per crystallographic asymmetric unit, but the
non-crystallographic redundancy is doubled from A to B
and again from B to C. This is reflected in the execution
times. The greater the amount of computation, the greater
are the savings on overheads. As the problem becomes
larger the useful number of nodes also increases. A

if (I am the coordinator node) then
read control input file
check consistency of input
count the number of grid points to be averaged in each brick
send information to other nodes

else
receive information from the coordinator node

endif
open input and output data files

load balancing procedure
identify my_firs t_master_brick, and my_last_master_brick

process all master bricks allocated to me
do brick = my_firs t_master_brick, my_last_master_brick

process all grid points in the current master brick
do grid = 1, number_of_grid_points in brick

if (mask(gr id) is solvent or acid) then
flatten

else

in molecular envelope, average.
determine all other grid points related to the current one by
non-crystallographic symmetry and extract the electron density

sum = ()
do nor = 1, non_crystal lographic_redundancy

compute coordinates of point(grid, ncr)
if (point(grid,nor) not in local memory) then

identify slave brick (s) containing points required for interpolation
fetch slave brick (s)

endif
interpolate electron_density for point (grid, ncr)
sum = sum + electron_density

enddo
new_density = sum / non_crystal lographic_redundancy
store new electron_density into new_master_brick

endif
enddo
write new_mater...brick on the disk

enddo

if (I am not the_coordinator_node) then
send to the_coordinator ..node averaging statistics

else
receive statistics

endif
close files and terminate computat ion

Fig. 5. Pseudo code showing the parallel
algorithm for electron-density averaging.

754 NON-CRYSTALLOGRAPHIC SYMMETRY AVERAGING USING PARALLEL COMPUTERS

Table 2. Execution times of ENVELOPE program using the three basic data-management schemes

Execution times (s) for problem C in Table i.

System
(network)
Gamma (hype rcube)

Delta§ (mesh)

DS+ +
No. of data-server nodes

No. of nodes DD* DN'I" 2 4 6 8
16 370t) 3499 3929 4550 5441 - -
32 2049 1782 1964) 21147 2182 - -
64 1393 1034 11189 I 116 1123 - -

8 x 8 = 64 973 877 - - - - - - 960
8 x 16 = 128 575 460 - - 502 935 - -
16 x 8 = 128 575 46(7 - - 499 - - - -
16 x 16 = 256 5(79 273 - - 3113 - - - -

16 x 32 = 512 666

* DD = data from disk.

i" DN = data across nodes.
++ DS = data servers.
§ n × n describes the aspect ratio of the mesh, altering the communica t ion pattern between nodes.

Three-Level Memory Hierarchy

_ 16 Mbyte - hypercube / t n , . , ~
- - 5 0 ns

- - 5 (I Its

- - 50 m s

Fig. 6. The storage hierarchy. A data item can be stored either in the local
main memory of a node, in the local main memory of another node, or
on the shared disk. The data access time increases by approximately
three orders of magnitude (from about 50 ns to at least 50 gs and
then to about 50 ms). The typical amount of storage space available
is about 32 Mbyte node -m, 2 Gbyte for a 64-node system and 1 Tbyte
disk space.

40

• ,-- :.,:1

E~
g z

x

() i

Intel IPSC iN60
j • Hypercubc

• • Intel Paragon

• IBM RS 601X1

U • • •

1 8 16 32 48 64

Nodes

Fig. 7. ENVELOPE program execution times using the DN mode versus
number of nodes for a single processor computer (IBM RS 6000) and

two parallel computers (lntel iPSC/860 and Intel Paragon). Data were
compiled from the projects listed in Table 4. The graph illustrates how
execution time decreases with increasing number of nodes.

Table 3. The relative speedup in the DN mode of the
ENVELOPE program for different size problems

Type of

system
iPSC/860
(hypercube)

Touchstone
Delta (mesh)

Relative speedup*

No. of nodes A B C
8 1.00 1.017 1.00

16 2 .19 1.94 1.95
32 3.73 3.38 3.33
64 5.38 5.46 5.75

8 x 8 = 64 7.31 6.71 6.59
16 x 4 = 64 7.96 6.75 6.57
8 x 16 = 128 13.60 13.13
16 x 8 = 128 13.67 13.46 13.43
16 x 16 = 256 16.21 13.38 20.98

* Relative speedup = (time on iPSC 860 8 nodes)/(actual time).

sample of execution times for a variety of problems
(Table 4) are given in Fig. 7.

Fourier transformations

After the average electron density has been determined in
one crystallographic asymmetric unit, fast Fourier analy-
sis (program FFTINV) is applied to it to calculate struc-
ture factors, Fcalcexp(iO~calc). The calculated phases can
then be combined with observed structure-factor ampli-
tudes (program RECIP), and an FFT synthesis (program
FFTSYNTH) can then compute a new electron-density
map from the Fourier coefficients, Fobsexp(k~calc). These
three computing steps take 10 to 25% of the total com-
putation time per cycle of iteration of phase refinement
and extension.

The FFF kernels were originally written by Ten
Eyck (Ten Eyck, 1973, 1977). These routines are for
space group P1, thus permitting application to all space
groups; the number of intervals along cell edges can be
composite numbers with prime factors up to 19.

The Fourier analysis of the electron density is com-
puted by a sequence of one-dimensional FFT's. The
values of the input electron density, p(x, y, z), are given

MARIUS A. CORNEA-HASEGAN et al. 755

Table 4. Comple ted and current projects using the parallel programs

Project* C C M V CVB3 HRV3 HRV 16 NOV NogV
Space group P212121 P21 P21221 P22121 P21 P 1
Cell dimensions

a (,~) 381.3 574.6 4(X).8 362.6 562.1 413.6
b (6) 381.3 302.1 344.2 347. I 354.1 41[).2
c (A) 408.6 521.6 3(13.9 334.9 612.8 419.7

(~) 90.0 90.0 90.0 90.0 90.0 59. I
¢) (<) 90.0 107.7 90.0 90.0 I 10.9 58.9
y (,) th).0 90.0 90.0 90.0 90.0 64.0

Non-crystallographic 60 120 30 30 120 60
redundancy

Resolution extent of 3.2 3.0 2.8 2.8 3.3 2.7
data (,~)

Current extent of phase 3.2 3.5 4.0 3.5 4.2 4.5
refinement

No. of grid points in 12647635 26867217 5485401 10644480 16194821 21952000
asymmetric unit

No. of protein grid 8954977 19479677 4334789 5356345 I 1369066 12334766
points averaged

No. reflections in an 631455 1306112 283634 444091 955111 1086127
asymmetric unit used
to calculate map

Protein mask Spherical Spherical Spherical Molecular Spherical Molecular
Inner radius (/k) 80.0 75.0 70.0 85.0 80.0 90.0
Outer radi us (/~) 146.0 162.0 165.0 165.0 175.0 220.0

* C C M V , cowpea chlorot ic mott le virus; CVB3, coxsackievir t ts B3; HRV3, human rh inov ims 3; HRV 16, human rh inovims 16; NOV, nodamura

virus; NwV, Nudaurel ia o9 virus.

at grid points, 0 < x < n x - 1 ,0 < y <_ ny - 1 ,0 < z < n z - 1.
Transforming first in the z direction, for each x and y,
ny complex-valued coefficients Cl are obtained from,

cl(x, y, 1) = ~-~p(x, y, z)exp(27rilz).

z

Because p is real, cl(x, y , - l) is equal to the complex
conjugate cl(x, y, l). A second set of one-dimensional
transformations produces,

c 2 (h , y, l) = Z C l (X , y, l)exp(27rihx).
X

Finally, the structure factors are obtained in a third set
of transformations, where,

F(h, k, l) = L c 2 (h , y, l)exp(27riky).

Y

These summations are over points in the unit cell (e.g.
x = 0 nx - 1). But only those coefficients within
the resolution limits R are saved, where,

Ihl - hmax = a/R, [kl - kmax -- b/R, 0 < 1 _</max = c i R .

Negative values of l are not needed, because p is real.
The resulting (2hmax + 1)(2kmax + 1)(/max + 1) structure
factors are reduced to those within a standard asymmetric
unit of reciprocal space and the given resolution limits.

In general, the number of electron-density values is
so large that only a portion of the map can be stored
in the local memory of most current computers (either
sequential or parallel). Thus, only an '(x, z) slab' (Fig.

4) of density p(x, y, z) with 0 < x _< nx - 1, 0 < z <
nz - 1, and for as many values of y as possible can
be stored in a node at one time. The slabs of density
are generated from the stored density in one asymmetric
unit with knowledge of the pertinent crystallographic
symmetry.

The size of a slab and the amount of memory available
strongly influence the execution time. Let M denote the
size of this storage. For P nodes, if M × P exceeds the
volume V = nx × ny x nz, then all the data can be in node
memory at one time. (At this time about 2 × 10 6 density
values can be stored on each node of the Intel iPSC/860,
or about 4 × 106 on the Intel Paragon.) In this case, the
data are distributed evenly and slabs with V/P values are
stored on each node, otherwise each node must transform
several slabs. With a single call to the FFT kernels, the
transformation with respect to z is accomplished for each
of the z lines in the slab and another call transforms with
respect to x. Each of the P nodes can simultaneously
perform the transformations in z and x for the allocated
slabs of electron density. The coefficients c2 must then
be exchanged among nodes. This is necessary because
no node has an entire set of values along any line in the
y direction. Data are exchanged among nodes in order
to construct (y, l) slabs for a range of h values (Fig.
4). The execution time for F F T I N V (and similarly for
F F T S Y N T H) depends crucially on how these exchanges
are carried out.

Two distinct mechanisms for this global transposition
have been implemented: (a) the use of an intermediate
disk file (scratch file mode) when M × P < V and (b)
an internodal exchange (global exchange mode) when

756 NON-CRYSTALLOGRAPHIC SYMMETRY AVERAGING USING PARALLEL COMPUTERS

Table 5. Analysis o f execution times for F F T S Y N T H tested on HRV16 (see Table 4) at 3 ,~, resolution (all times are
in s)

'Start ' is the average time per node from start to when structure factors begin to be read. 'Read' is the average time per node to read the structure
factor from the disk. 'FFT' is the average time per node to carry out all three (primary, secondary and tertiary) Fourier summations. 'Exchange' is
the average time per node to globally exchange the data among nodes. 'Write ' is the average time per node for writing the electron density onto the
disk. "(Total)' is the average time per node for the execution of the program measuring from the start to the last node to finish.

(a) Ratio (time for scratch exchanges)/(time for global exchange)
Nodes NIH 128 Hypercube Cal Tech 512 Paragon
8 58.573/5.064 -- 11.6

16 24.873/3.357 -- 7.41 58.050/3.365 = 17.3
32 44.174/2.407 = 18.35 103.692/3.716 = 27.9
64 69.278/I.857 = 37.31 220.986/3.721 -- 59.4

(b) Exchange time as a percent of total time
NIH 128 Hypercube Cal Tech 512 Paragon

Nodes Scratch Global Scratch Global
8 63.5 13.2

16 45.4 10.5 68.3 12.1
32 69.6 11.2 76.7 12.0
64 83. I 1(}.5 78.0 6.6

(c) Breakdown of various components of the FFTSYNTH
Nodes 16 32
Start 1.855 2.990
Read 2.939 1.783
FFT 10.455 5.237
Exchange 2.619 2.477
Write 4.091 3.539
(Total) 22.235 16.252
Total 3(I.949 28.158
% FFF 33.8 18.6

inversion on the Purdue University 140-node Paragon
48 64 96 128

4.594 9.292 20.05(I 24.500
2.693 1.803 1.791 1.507
3.493 2.614 1.734 1.295
2.440 2.639 3.083 4.699
3.503 3.284 4.713 4.773

! 6.924 19.776 31.489 36.9 ! 4
20.050 30.100 51.046 64.551
12.0 8.68 3.40 2.01

M × P > V. The first takes much more time than the
second, not only because of the time necessary to transfer
data between a node and a disk (Fig. 6), but also because
of the bottleneck occurring when several nodes need
access to the disk at the same time. The program uses
(b) unless the data do not fit into the combined memory
of all nodes allocated to the task.

In the global exchange mode, the exchange of data
takes place by a series of messages transmitted among
the nodes. For example, assume there are only four
nodes, 0, 1, 2 and 3, and suppose nx = ny = nz = 8. Node 0
transforms a slab with two (x, z) planes, those with y = 0
and 1. Then during the exchange, node 0 keeps the 'stick'
of data with h = 0, 1; y = 0, 1; 1 = 0 7. Node 0 must
receive the stick with h = 0 , 1; y = 2 , 3; l = 0 7
from node 1 and, likewise, sticks with h = 0, 1 from the
other nodes. At the end of the exchange, node 0 has the
slab of c2(h, y, l) values with h = 0 , 1; y = 0 7;
1=0 7. Node 1 collects sticks with h =2 and 3
from nodes 0, 2, 3, and similarly for the other nodes.

This exchange is accomplished in the following three
steps.

(11 Nodes 0 and
2 and 3 exchange

(2) Nodes 0 and
1 and 3 exchange

(3) Nodes 0 and
1 and 2 exchange

1 exchange sticks; while also nodes
sticks.
2 exchange sticks; while also nodes
sticks.
3 exchange sticks; while also nodes
sticks.

Because of the architecture and the design of the com-
munication system, each of these three steps takes the
same amount of time. Similarly, when P nodes are used,
all of the data is exchanged in P - 1 steps on a hypercube
or P steps on a mesh. The Fourier synthesis is computed
in an identical manner to the Fourier inversion, but in
the opposite order. Table 5 lists times for these two
exchange schemes for F F T S Y N T H applied to the HRV 16
problem (Table 4). The times show that the use of the
global exchange method takes an order of magnitude less
execution time than the scratch file method. In addition
to the exchange time, there is 'overhead': time must be
spent to load the program onto the nodes, time is required
to read the input data and to write the output data, etc.
The time actually devoted to the FFT transformation is
rather small compared to these other times which are
necessary to carry out the computation.

Only the transformation time is scalable. The transfor-
mation time (labeled 'FFT' in Table 5) halves when the
number of nodes doubles. But because of the 'overhead'
times, the total execution time first decreases and then
increases as the number of nodes increases. For the
HRV 16 problem at 3/~ resolution, the minimum time to
execute the complete F F T S Y N T H program was 27 s with
32 nodes of the 128-node hypercube and was 37 s with
16 nodes of the 512-node Paragon. Results of timing
experiments for the CVB3 problem (Table 4) are similar
(Lynch & Zhang, 1994).

MARIUS A. CORNEA-HASEGAN et al. 757

Structure-factor sorting

Calculated phases, obtained from the FFTINV routine,
are combined with the original observed amplitudes
and used in the calculation of statistics useful in the
assessment of convergence in phase refinement (e.g.
correlation coefficients and R factors). The RECIP pro-
gram sorts the output from the FFTINV program into
the same sequence as used for listing the observed am-
plitudes of one reciprocal-space asymmetric unit. First,
the reflections are distributed evenly to P nodes. Then
each node sorts its allocated set of structure factors in
ascending order according to the values of the reflection
identifier h x 22o + k x 2~°+ I. Next, information about
the distribution of the sorted reflections is sent by
each node to node 0. Node 0 uses this information to
determine the range of reflections for each node, so that
each node will merge approximately the same number of
reflections. These limits are sent to the nodes and then
an exchange of reflections is carried out similar to the
exchange used by FFTINV and by FFTSYNTH. Each
node then merges the reflections it has received from
the other nodes into a fully ordered set (see Table 6 for
execution times).

One of the options of the RECIP program is that each
calculated structure-factor amplitude which corresponds
to an observed amplitude is replaced to obtain the
Fourier coefficients, WFob,~exp(i~c), where w is the
weight or figure of merit determined from Fob,~ and
Fcalc. These reflections are passed to program FFTEXP,
which uses knowledge of the crystallographic symmetry
to expand the reflection data from an asymmetric unit to
a hemisphere of reciprocal space. This is necessary as
the FFT synthesis program is for space group P1. The
coefficients are then sorted using the same algorithm as
before for presentation to the FFTSYNTH program (see
Table 6 for execution times).

The Structural Biology Language

A desirable computing environment for solving com-
plex problems on parallel machines would be a high-
performance front-end graphics workstation to provide
windows and display capability, connected to a variety
of remote parallel computers. Parallel machines are
inherently more complex and less user friendly than
sequential computers. Access to parallel machines is
rather restricted, as they are expensive shared resources.
To allow a user to focus on the application without
being distracted by the problems of different systems, an
environment has been created to hide as much as possible
of the complexities. It also includes graphical output for
the inspection of diffraction patterns, electron-density
maps and mask allocation. Part of this environment is
a special 'Structural Biology Language' (SBL) (Cornea-
Hasegan & Marinescu, 1994).

Table 6. Execution times (s)for RECIP and FFTEXP

The table refers to the H R V I 6 project at 3.5 ,~ resolut ion (Table 4). All
t imes are affected to some extent by concurrent ly running programs in
other parl i t ions of the systems.

Inlel
iPSC/860 at NIH lntel Delta lntel Paragon

Nodes RECIP FFTEXP RECIP FFTEXP RECIP FFTEXP
2 135 95
4 352 151 129 (,~1 75 47
8 313 1 IX) 83 36 54 36

16 2611 84 51) 22 56 27
32 287 76 38 16 58 22
64 37 13

128 61 14

The programs currently available in this environment
relate to phase refinement and phase extension in the
presence of non-crystallographic symmetry, including
the special case of merely solvent flattening when the
non-crystallographic redundancy is one. It is intended
to be augmented to support other types of programs
to cover many aspects of structural biology and macro-
molecular crystallography. For instance, a start has been
made to develop parallel algorithms for diffraction data
processing (Rossmann, 1979; Rossmann, Leslie, Abdel-
Meguid & Tsukihara, 1979).

Two types of programs can be invoked by SBL.
(a) Primary programs like ENVELOPE, FFTINV, RE-

CIP, FFTEXP and FFTSYNTH, rotation-function cal-
culations, rigid-body refinements and structure-factor
calculations.

(b) Auxiliary programs designed to support the appro-
priate sequencing of the programs in the first category,
to test some of their output, and to transform part of the
control input data for these programs.

Currently these programs are available on: (a)
iPSC/860 systems, at Purdue University and at NIH; (b)
the Paragon systems at Purdue University and California
Institute of Technology and Intel Super Computer
System Division. Source code can be obtained from
the authors.

SBL permits multiple nested iterations, and two dif-
ferent levels of phase extension. SBL also allows the
computation to be restarted after being stopped by the
user, by a hardware failure or exhaustion of the allocated
time. The computation can be resumed from the end of
the last completely executed program in the series of pro-
grams requested. Every SBL program is compiled into a
UNIX shell script (UNIX command list), which controls
the execution of the entire sequence of programs.

Testing for convergence

The major criterion used in tests of convergence during
phase refinements is the correlation between Fobs and
Fcaj~. The F~alc values are obtained by back Fourier
transformation of the modified electron-density map. The

758 NON-CRYSTALLOGRAPHIC SYMMETRY AVERAGING USING PARALLEL COMPUTERS

correlation coefficient, C, is defined as,

C = [~-~((Fobs) - Fobs)((Fcalc) - Fcalc)]

- {[~--]((Fobs) - Fobs)2~-]((Fca.c) - Fca.c)2]'/2},

where (Fobs) and (F~alc) are mean values and the sums
are over all observed reflections in specified resolution
shells. Convergence tests are based on the improvement,
A, of the overall C in successive iterations, i, where
A = Ci - Ci_ ~. The first and most important test is that
if the overall C improves. However, additional tests can
also be made to ensure the following.

(1) That the refinement is uniform over the complete
resolution range. If the C's in some resolution shells are
substantially poorer than in neighboring shells, then this
might imply conflicts between differing phase solutions
(Arnold et al., 1987).

(2) That there is no further change in C in all
resolution shells.

(3) That the C's have essentially converged for all
sizes of F. The larger F's, although fewer in number,
have a greater influence on the electron density and will,
therefore, converge faster.

Although faster workstations with larger internal
memory are emerging every year, so are larger
crystalline biological complexes, as are progressively
more computer intensive techniques for the solutions of
difficult crystallographic problems. Parallel computers
can substantially reduce computing time and permit the
study of problems with very large memory requirements.
With the ability to collect diffraction data of complex
biological crystallized samples at ever increasing rates,
it is anticipated that expansion of the use of parallel
computers will accompany the exploration of new
biological frontiers.

We are grateful for many helpful discussions with
Mavis Agbandje, Michael Chapman, Jack Johnson,
Robert McKenna, Padmaja Natarajan, Adam Zlotnick
and the continuing enthusiasm of John Rice. We are
also grateful for help from John Steele, John Jackson
and others at the Purdue University Computer Center,
as well as the Cal Tech and NIH computing centers. The
work was supported by NSF grants to Robert E. Lynch
and Michael G. Rossmann, an NIH grant to Michael G.
Rossmann, as well as support from the Lucille Markey
Foundation for expansion of structural studies at Purdue
University.

Concluding remarks

The parallel algorithms used in the programs described
here are designed for distributed and shared-memory
MIMD (multiple instruction multiple data) architectures.
There are several types of MIMD systems: (a) mas-
sively parallel processing systems (MPP's), such as
discussed in this paper, (b) clusters of workstations
and (c) multiprocessor workstations. The programs for
workstation clusters (available by mid-1995 from the
authors) use the same algorithms as those described
here, but communicate using libraries like MPI (message
passing interface) and PVM (parallel virtual machine).

A small problem could be solved using one or a
few workstations, while a large problem may require
tens or possibly hundreds of workstations or an MPP
with tens or hundreds of compute nodes. In contrast,
a sequential program can only run on one single pro-
cessor workstation regardless of the problem size. By
harnessing them together or by using many compute
nodes in an MPP, the computation will be carried out
faster in proportion to the number of computers running
parallel. Some of the largest problems we describe
here are still outside the usual memory capacity of
the largest workstations currently available. Considering
the crystallographic difficulties, the coxsackievirus B3
virus structure (Muckelbauer et al., 1995) would have
been difficult to solve without the help of a parallel-
processing system. Parallel computers permitted testing
of a much larger number of procedures (Muckelbauer et
al., 1995) in a reasonable time frame eventually leading
to a successful solution.

APPENDIX

The E N V E L O P E program provides several functions
(Rossmann, McKenna, Tong, Xia, Dai, Wu, Choi, Mari-
nescu & Lynch, 1992).

1. Mask generation

(a) Generates masks based upon intersecting spheres.
This is the simplest way of determining a mask, useful
in the initial stages of a structure determination.

(b) Generates masks based on the current averaged
electron density placed into a standard orientation. By
first averaging the density into a standard orientation,
the surrounding molecules average out, because the local
symmetry breaks down outside the molecular envelope.
Hence, this new map can be used to determine the limits
of the molecular envelope.

(c) Generates masks based on atomic positions of
a homologous molecule. If a reasonable structure is
already available, it might be the best guide for deter-
mining an envelope.

(d) Modifies a mask (enlarges, shrinks, fills holes).
These operations ensure that the mask has the correct
non-crystallographic symmetry and touch up other prop-
erties.

2. Averaging operations

(a) Modifies electron density by averaging, solvent
flattening, etc. This is the central averaging procedure
for phase improvement and averaging.

M A R I U S A. C O R N E A - H A S E G A N et al. 759

(b) P l aces the a v e r a g e d e l e c t r o n d e n s i t y into a s tan-

da rd o r i en ta t ion . Th i s o p e r a t i o n is r e f e r r e d to in l (b)
above . In e s s e n c e the c a l c u l a t i o n s are s imi l a r to t hose

in 2(a) .

3. Other fac i l i t i es

(a) Takes e l e c t r o n d e n s i t y f r o m a s t a n d a r d o r i e n t a t i o n

and p l aces it into the c rys t a l cel l t ak ing into a c c o u n t

the v a r i o u s m o l e c u l a r e n v e l o p e s . I f a s t ruc tu re was

p r e v i o u s l y d e f i n e d in a s t a n d a r d o r i en t a t i on , t hen this

p r o c e d u r e is u se fu l in g e n e r a t i n g a s ta r t ing d e n s i t y w i th in

the c rys t a l o f in teres t .

(b) D e t e r m i n e s o p t i m a l o r i e n t a t i o n and pos i t ion o f

a pa r t i c l e by s e a r c h i n g for m i n i m u m e l e c t r o n - d e n s i t y

sca t t e r or m a x i m u m h e i g h t o f a g i v e n e l e c t r o n - d e n s i t y

f e a t u r e such as a h e a v y a tom.

(c) O t h e r f u n c t i o n s r e l a t ed to da ta c o n v e r s i o n , e.g.

m e r g i n g m a s k and e l e c t r o n - d e n s i t y data , c o n v e r t i n g da t a

f r o m b r i ck to p l ane f o r m a t and back , etc.

References

ABAD-ZAPATERO, C., ABDEL-MEGUID, S. S., JOHNSON, J. E., LESLIE, A.
G. W., RAYMENT, 1., ROSSMANN, M. G., SUCK, D. & TSUKItlARA, T.
(1980). Nature (London), 286, 33-39.

ARNOLD, E., VRmND, G., LuO, M., GRIFFITH, J. P., KAMER, G., ERICKSON,
J. W., JOHNSON, J. E. & ROSSMANN, M. G. (1987). Acta Cryst. A43,
346-361.

BmCOGNE, G. (1976). Acta Cryst. A32, 832-847.
BUEIINER, M., FORD, G. C., MORAS, D., OLSEN, K. W. & ROSSMANN, M.

G. (1974). J. Mol. Biol. 82, 563-585.
CORNEA-HASEGAN, M. A. & MARINESCU, D. C. (1994). Purdue Univ.

Department of Computer Sciences, Tech. Rep., CSD TR-94-008.
CORNEA-HASEGAN, M., MARINESCU, D. C. & ZIIANG, Z. (1994). Concur-

rency Pract. Exper. 6, 205-229.
DODSON, E., GOVER, S. & WOLF, W. (1992). Editors. Molecular Re-

placement. Proceedings of the CCP4 Study Weekend, 31 January-I
February 1992. Daresbury, England: SERC.

Fox, G., JOIINSON, M., LYZENGA, G., OTFO, S. O., SALMON, J. ~ WALKER,
D. (1987). Solving Problems on Concurrent Processors. Englewood
Cliffs: Prentice-Hall.

GAYKEMA, W. P. J., HOI,, W. G. J., VEREIJKEN, J. M., SOFTER, N. M.,
BAK, H. J. & BEINTEMA, J. J. (1984). Nature (London), 309, 23-29.

HCX3LE, J. M., Cuow, M. & F1LMAN, D. J. (1987). Crystallography in
Molecular Biology, edited by D. MORAS, J. DRENrU, B. STRANDBERG,
D. SUCK & K. WILSON, pp. 281-292. New York: Plenum Press.

JOUNSON, J. E. (1978). Acta Crvst. B34, 576-577.
JONES, T. A. (1992). Molecular Replacement. Proceedings of the CCP4

Study Weekend. 31 January-I February, 1992, edited by E. DODSON,
S. GOVER & W. WOIJ:, pp. 91-105. Daresbury, England: SERC.

LAWRENCE, M. C. (1991). Quart. Rev. Biophys. 24. 399-424.
LYNClt, R. E. & ZHANG. Z. (1994). Purdue Univ. Department of Com-

puter Sciences, Tech. Rep. CSD TR-94-054.
MARINESCU, D. C., RICE, J. R., CORNEA-HASI-GAN, M. A., LYNCH, R. E.

8~. ROSSMANN, M. G. (1993). Concurrency Pract. Exper. 5, 635--657.
MUCKELBAUER, J. K., KREMER. M., MINOR, 1., TONG, L., ZLOTNICK, A.,

JOHNSON, J. E. & ROSSMANN, M. G. (1995). Acta Crvst. D51. In the
press.

ROSSMANN, M. G. (1972). The Molecular Replacement Method. New
York: Gordon & Breach.

ROSSMANN, M. G. (1979). J. Appl. Crvst. 12, 225-238.
ROSSMANN, M. G. (1990). Acta Cryst. A46, 73-82.
ROSSMANN, M. G., ARNOI,D, E., ERICKSON, J. W., FRANKENBERGER, E.

A., GRIFFITH, J. P., HECIIT, H. J., JOIINSON, J. E., KAMER, G., Luo, M.,
MOSSER, A. G., RUECKFRT, R. R., SHERRY, B. & VRIEND, G. (1985).
Nature (London), 317, 145-153.

ROSSMANN, M. G., LESLIE, A. G. W., ABDEL-MEGUID, S. S. & TStJKIIIARA,
T. (1979). J. Appl. Cryst. 12, 570-581.

ROSSMANN, M. G., MCKENNA, R., TONG, L., XIA, D., DAI, J., WU, H.,
CHOI, H. K. & LYNCH, R. E. (1992). J. Appl. Cryst. 25, 166-180.

ROSSMANN, M. G., MCKFNNA, R., TONG, L., XIA, D., DAI, J., WU,
H., Cllol, H. K., MARINESCU, D. & LYNCH, R. E. (1992). Molecular
Replacement. Proceedings of the CCP4 Study Weekend, 31 January- 1
February 1992, edited by E. DODSON, S. GOVER & W. WOLF, pp.
33-48. Daresbury, England: SERC.

SMITH, G. E., FRASER, M. J. & SUMMERS, M. D. (1983). J. Virol. 46,
584-593.

TEN EYCK, L. F. (1973). Acta Cryst. A29, 183-191.
TEN EYCK, L. F. (1977). Acta Cryst. A33, 486-492.
UNGE, T., LILJAS, L., STRANDBERG, B., VAARA, I., KANNAN, K. K.,

FRIDBORG, K., NORDMAN, C. E. & LENTZ, P. J. JR (1980). Nature
(London), 285, 373-377.

